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Abstract
We present the results of a plane wave based density functional study of the structure and
properties of tetragonal zirconia in the range of pressures from 0 to 50 GPa. We predict a
transition to a fluorite-type cubic structure at 37 GPa which is likely to be of a soft mode origin
and is accompanied by a power law decrease of the frequency of the Raman-active A1g mode. A
detailed study of the pressure effect on phonon modes is given, including theoretical Raman
spectra and their pressure dependence. Our results provide a consistent picture of the
pressure-induced phase transition in tetragonal zirconia.

1. Introduction

Zirconia, ZrO2, is an extremely important ceramic material for
modern technological applications. It has useful mechanical
properties for manufacturing of medical devices [1], and
generally excellent characteristics for engineering applica-
tions [2]. One of the most important features that define
the mechanical properties of zirconia is the transformation
toughening mechanism [3]. At ambient pressure, ZrO2

has three polymorphs, cubic (c-ZrO2), tetragonal (t-ZrO2)
and monoclinic (m-ZrO2). Phase transformations between
cubic and tetragonal, and tetragonal and monoclinic phases
occur on cooling from high temperatures. Remarkably, the
ground state monoclinic phase has an atomic density only
96% of that of the cubic phase and 97% of that of the
tetragonal phase. It is this anomalous property that makes
transformation toughening possible. In view of this, the
understanding of the interplay between mechanical properties
of zirconia and its density becomes of paramount importance.
A number of phase transformations in ZrO2 are known to
occur under hydrostatic pressure; for example, the monoclinic
phase undergoes transitions to different orthorhombic phases
upon compression [4]. The complete P–T phase diagram of

zirconia [5, 6] demonstrates a rich variety of transformations
that are possible in this system in response to changes in
external parameters. These transformations are responsible
for the high fracture toughness of zirconia based ceramics,
although properties of actual engineering materials are affected
also by structural defects, crystallite size, sample treatment
history, etc.

There is a long history of theoretical studies of properties
and phase transformations of ZrO2. Density functional
theory (DFT) is currently the method of choice for first-
principles studies of crystalline materials, and a number of
DFT studies address fundamental issues of structure and
properties of various phases of zirconia [7, 8]. Lattice
dynamics is one of the central issues in such investigations,
since it is expected that many transformations in the
ZrO2 phase diagram are related to the soft phonon mode
mechanism [9].

An important issue which arises when one compares
theoretical and experimental results is that the DFT studies are
usually performed in the athermal limit, T = 0 K. Most phases
of ZrO2 are difficult to stabilize at low temperatures without
applying pressure or introducing dopants. The situation is
more promising in the case of the tetragonal modification,

0953-8984/09/485404+12$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/48/485404
mailto:vmilman@accelrys.com
http://stacks.iop.org/JPhysCM/21/485404


J. Phys.: Condens. Matter 21 (2009) 485404 V Milman et al

which can be stabilized in nanocrystalline form at ambient
pressure and room temperature without doping. Recent
experimental studies probed a number of important structural
and vibrational properties of t-ZrO2 [4, 5] including pressure-
induced changes in its phonon spectrum [4]. In spite of these
investigations a number of open issues remain, in particular
related to the assignment of vibrational modes. Therefore, a
further analysis of the pressure-induced changes in the phonon
spectrum as related to the suggested high pressure phase
transition [4] is required.

The present work is focused on the theoretical study
of structure and properties of t-ZrO2 under hydrostatic
compression, with particular emphasis on phonon frequencies
and Raman spectra. It has been suggested that external
pressure removes tetragonal distortions and the structure
transforms to a cubic modification via most probably a soft
mode mechanism [4]. The main experimental technique used
to diagnose a soft mode behaviour is Raman spectroscopy. We
present the first DFT results on the pressure dependence of
Raman frequencies and intensities and use these theoretical
data to interpret experimental findings.

The overall structure of the paper is as follows. Section 2
presents the computational set-up of the current investigation.
We then present in section 3 our results for properties of t-
ZrO2 at ambient pressure and provide a comprehensive critical
review of the available experimental and theoretical data on
the structure, compressibility, elastic constants, Born effective
charges, dielectric permittivity, and phonon frequencies of this
polymorph. The accuracy of these results allows us to proceed
with the study of the effect of compression on the structure and
properties (section 4), and this is followed by conclusions.

2. Computational methodology

The tetragonal modification of ZrO2 has space group 137
(P42/nmc) with two formula units per cell. In the setting that
corresponds to the origin choice 1 as defined in [10] there is
a Zr atom located on the Wyckoff position 2a (0 0 0), and an
O atom located on the Wyckoff position 4d (0 0.5 Oz). The
structure is defined by three parameters: lattice constants a
and c, and the z coordinate of the oxygen atom, Oz [11]. The
actual tetragonal phase represents only a slight modification of
the fluorite structure of the cubic form c-ZrO2. The deviation
from the ideal cubic arrangement is described via the tetragonal
distortion of the cell parameters, A = c

a
√

2
, and the internal

distortion, dz = Oz − 0.25. The cubic setting is characterized
by A = 1 and dz = 0.

All calculations were carried out using the DFT based
CASTEP code [12, 13]. The local density approximation,
LDA, is used to represent the exchange–correlation functional
in the DFT formalism. It is known that for transition
metal oxides a gradient-corrected approximation, GGA, to the
exchange–correlation functional does not improve on the LDA
description; the resulting structures overestimate bond lengths
and produce too low phonon frequencies [14, 15]. On the other
hand, GGA can produce more accurate formation energies,
as was shown for zirconia polymorphs [16]. The pressure
induced phase transition studied here relies exclusively on the

effect of pressure on the crystal structure, electronic structure
and vibrational properties and does not make use of relative
energies of different phases; hence we adopted the LDA
approach.

The electron–ion interaction was represented in our cal-
culations by norm-conserving pseudopotentials; the reference
configurations for valence electrons were 4s24p64d25s2 for
zirconium (cut-off radii of 1.58, 1.73, 1.79 and 1.72 a.u.,
respectively) and 2s22p4 for oxygen (cut-off radii of 1.34 and
1.53 a.u., respectively). Pseudopotentials were generated using
the designed nonlocal pseudopotential scheme of Rappe et al
[17, 18] which was used to guarantee accurate valence states in
unfrozen semicore potentials.

A plane wave basis set with the energy cut-off of 750 eV
was used to expand the wavefunctions. An 8 × 8 ×
6 Monkhorst–Pack grid [19] was used for Brillouin zone
integration (30 points in the irreducible part of the Brillouin
zone). The SCF convergence criterion was set to 1 ×
10−8 eV/atom. Lattice parameters were converged to 2×10−5

Å and fractional atomic coordinates to 1×10−5 as compared to
calculations using a higher energy cut-off of 900 eV and a more
accurate k-point grid of 14 × 14 × 10 (140 irreducible points).
A smaller set of k-points, 5 × 5 × 3 (12 irreducible points),
has been used in earlier studies (e.g., [8, 14, 20, 21]). We
found that this setting can affect cell parameters by as much as
0.001 Å and does not provide converged results for the phonon
frequencies and dielectric properties that are sensitive to the
crystal structure.

The pressure response of t-ZrO2 was studied by
calculating its P—V equation of state, EOS, for applied
pressures up to 50 GPa. The lattice parameters and oxygen
position were optimized at each value of the external pressure,
so that the volume could be determined. The structures were
considered converged when the z component of the force on
oxygen atom was less than 0.0005 eV Å

−1
, and the maximum

component of the stress tensor was less than 0.01 GPa.
The resultant EOS was fitted using the third-order Birch–
Murnaghan analytical expression [22] to produce the bulk
modulus, B , and its pressure derivative, B ′. Physical properties
of t-ZrO2 including the band structure, optical properties,
vibrational frequencies, dielectric permittivity, Born charges,
and infrared and Raman intensities were calculated for each
point of the EOS.

These structural optimizations yield an equation of state
in the ‘athermal limit’, where the effect of both zero-
point energy and temperature is neglected. The quasi-
harmonic approximation models a thermal correction under
the assumption that the dominant contribution arises from the
change in vibrational free energy under thermal expansion due
to the volume dependence of the phonon frequencies. Using
the results of our lattice dynamics calculations at the � point
we computed the vibrational free energy as a function of
volume. This gives a zero-point and thermal contribution to the
pressure of 2.2 GPa, in the pressure range from 0 to 30 GPa.
However the quasi-harmonic approximation is not valid in the
vicinity of a soft mode phase transition, where anharmonicity
is large and the harmonic expression for the vibrational free
energy does not apply. The contribution of the remaining hard
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modes which do not exhibit any large anomaly through the
phase transition (see figure 6) will remain roughly constant,
but there is no effective means within the scope of the theory
used here to compute the soft mode contribution. Consequently
we choose to report pressures in the text and figures in the
athermal limit unless stated otherwise.

Variational density functional perturbation theory, DFPT,
was used to evaluate the lattice dynamics and the response to
an electric field [23]. Raman activities were computed using
a hybrid method combining density functional perturbation
theory with finite displacements. The Raman activity tensor of
a mode is given by the derivative of the dielectric permittivity
tensor with respect to the mode amplitude. This was
evaluated using a numerical approximation of the central
difference between permittivity tensors computed using DFPT
at geometries displaced from equilibrium by small positive and
negative amplitudes according to the mode eigenvector. This
method is similar to that of Porezag and Pedersen [24] except
for our use of DFPT to compute the dielectric permittivity.

There exist a large body of experimental and theoretical
results for t-ZrO2 properties at ambient conditions. It should
be noted that comparisons of theoretical data to experiment
can be difficult since some of the experimental results refer
to materials stabilized by impurities, or to high temperature
properties, while calculations are performed on a pure material
at 0 K. Nevertheless a comparison of our results to other
available data can be used to judge the accuracy of the current
zero-pressure calculations.

There is little information about the behaviour of the
tetragonal phase of pure zirconia under pressure [4, 5]. The
main goal of the subsequent discussion is to analyse the high
pressure behaviour in connection with the changes in the
phonon spectrum and their relationship to pressure-induced
phase transitions. An analysis of the Raman mode evolution [4]
based purely on experimental data was not sufficient to explain
the experimentally observed transition from the tetragonal to
cubic modification [5].

3. Properties of tetragonal zirconia at ambient
pressure

This section presents our results for various lattice properties of
t-ZrO2 at zero pressure in comparison with experimental data
and other DFT results. Such an analysis establishes the level of
expected accuracy of the present calculations and is a necessary
prerequisite for a phase transition study.

3.1. The structure of tetragonal zirconia

There are a wealth of experimental reports on the structure
t-ZrO2; however, care needs to be exercised in selecting
the structure that can be used to validate theoretical results
for pure zirconia in the athermal limit. Pure t-ZrO2 has
been studied using single-crystal x-ray diffraction at high
temperature [11] and later at room temperature [4]. A
neutron powder diffraction study of pure t-ZrO2 has been
performed at room temperature [25] and down to cryogenic
temperatures [26, 27]; the results can be compared to those
from neutron powder diffraction analysis of yttria-stabilized t-
ZrO2 [28]. A compilation of experimentally reported structural

parameters is given in table A.1. It has to be noted that
experimental results for nanocrystalline zirconia can exhibit
a strong dependence of structural parameters and vibrational
frequencies upon the crystallite size. This size has to be
sufficiently small for the tetragonal phase to stabilize, but
not so small as to distort bulk-like properties. It appears
from experimental x-ray diffraction and Raman spectroscopy
study that the recommended crystallite size range is 10–
20 nm [29, 30]. We suggest that the neutron diffraction results
obtained at 5 K for samples with the grain size of 13 nm
provide the most accurate description of the structure of pure t-
ZrO2 [27]. This structure is characterized by a = 3.5742(3) Å,
c = 5.1540(8) Å, with tetragonal distortion parameters A =
1.0196 and dz = 0.0473(4).

DFT studies of zirconia polymorphs have a long history.
The structures of cubic and tetragonal modifications are fairly
simple and require only modest computational resources,
and hence have been studied since the early days of DFT
applications to solid state problems. A number of DFT results
for t-ZrO2 published in the last two decades are collected
in table A.1 and compared to experimental data. Table A.1
groups LDA and GGA results separately and the underbinding
effect of GGA can be seen clearly since the cell volume is
overestimated by 5–6%. LDA overbinding errors are less
pronounced—the volume is underestimated by about 1%, a
fraction of the GGA error. Our LDA result gives a =
3.5654 Å, c = 5.1258 Å, A = 1.0166 and dz = 0.0441 in
good agreement with experiment and with other accurate LDA
calculations.

Table A.1 shows a similarity between converged theoret-
ical studies that use different pseudopotential schemes: the
projector augmented wave method (PAW), norm-conserving
pseudopotentials (NCP) or ultrasoft pseudopotentials (USP).
The results of pseudopotential calculations also agree well
with the all-electron FLAPW data. This indicates that there
is no transferability issue in well converged pseudopotential
DFT calculations. This compilation of structural data also
provides a guide to the sensitivity of the results obtained to
such parameters as temperature and doping in the case of
experimental data, and the k-point sampling and basis set size
in the case of calculations.

3.2. Compressibility and elastic constants

We compare calculated elastic characteristics of t-ZrO2 to
known data in order to confirm that the response of the
lattice to applied strain is reproduced accurately in DFT
calculations. Available experimental and DFT results for
mechanical properties and single-crystal elastic constants of
tetragonal ZrO2 are summarized in tables A.2 and A.3,
respectively. The bulk modulus of single-crystalline t-ZrO2 can
be estimated at about 190(10) GPa from experimental studies,
and our calculated values of 200(2) GPa in the athermal
limit and 183(2) GPa taking into account quasi-harmonic
corrections are in good agreement with this estimate and with
other theoretical results (table A.2).

Voigt-averaged results for B and G in table A.2 represent
an upper limit for polycrystalline moduli. Alternative
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averaging schemes of Reuss and Hill were applied to our
calculated elastic constants and produced respectively (all in
GPa): BR = 212, BH = 217, GR = 76, and GH = 89.
The Poisson ratio and Young modulus are strongly orientation
dependent, as indicated in table A.2; our results agree well with
the scarce data available for polycrystals.

Single-crystal elastic constants of t-ZrO2 were calculated
by applying finite strains and linearly fitting the calculated
strain–stress dependences as described in [31]. The internal
degrees of freedom are optimized for each strained structure.
These calculations were carried out in two different ways:
(i) using the correct crystal symmetry, where strained
structures possessed the tetragonal symmetry reduced in
accordance with the applied strain; and (ii) using the P1
version of the structure. The latter approach was utilized to
account for the possible softening of elastic constants as a
result of symmetry breaking under external stress. The effect of
associated relaxations resulted in a decrease of the value of C13

by about 10 GPa and had very little effect on any other elastic
constant. The theoretical single-crystal elastic constants are
given in table A.3 in comparison to other published results. The
bulk modulus as obtained from Ci j coefficients is 212(2) GPa
and thus is in reasonable agreement with the EOS result.

It is clear from table A.3 that the bulk modulus evaluated
from experimental elastic constants [32] is considerably lower
than our calculated value and experimental estimates from
hydrostatic compression (table A.2). The difference may be
related to the fact that the experiment [32] was conducted
on a ceria doped material. One could also note that the
technique relies on the reference value of the Young modulus
in addition to the diffraction data. The single-crystal Young
modulus is orientation dependent, and according to our results
its value is between 248 GPa (perpendicular to the c axis)
and 320 GPa (along the c axis). If we multiply the data
from [32] by a scaling factor to account for a different value
of the Young modulus, we get some Ci j components and
the bulk modulus in better agreement with DFT calculations.
However, the discrepancy for the off-diagonal terms remains
large or becomes worse, suggesting that either this technique
is not sufficiently accurate for determining elastic constants
of t-ZrO2, or that ceria doping has a strong effect on elastic
properties.

The two most recent GGA calculations [33, 34] strongly
disagree with each other as regards nearly all components of
the elastic constants tensor (table A.3). It is likely that the
k-point sampling used in [33] is not sufficiently accurate; it
results in an overestimated tetragonal distortion A (table A.1)
and strongly underestimated elastic constants for the tetragonal
phase.

Our LDA result for elastic constants is consistent with
earlier LDA calculations [35] and with the measured bulk
modulus, and represents a reliable estimate of t-ZrO2 elastic
properties.

3.3. Born effective charge tensors

The Born effective charge tensor Z∗k
i j can be defined in two

equivalent ways. The charge can be thought of either as a

Table 1. Born charges of tetragonal ZrO2.

LDAa LDAb LDAc

Z∗Zr
11 5.75 5.74 5.89

Z∗Zr
33 5.09 5.15 5.11

Z∗O
11 −3.53 −3.52 −3.70

Z∗O
22 −2.22 −2.49 −2.19

Z∗O
33 −2.53 −2.57 −2.56

a USP calculations [14].
b NCP calculations using
ABINIT [20].
c NCP calculations, present
result.

force in the direction i on the atom k as a result of applying
a unitary electric field along the direction j , or as the induced
polarization in the direction i due to the unitary displacement in
the direction j of all atoms k. The Born effective charge tensors
are diagonal in the high symmetry structure of t-ZrO2 [20].
The charge tensor of Zr atoms is diagonal with only two
independent components, along and perpendicular to the c axis
(Z∗Zr

11 and Z∗Zr
33 ). The Born effective charge tensor of O atoms

is diagonal with three inequivalent components, Z∗O
11 , Z∗O

22 and
Z∗O

33 .
We present calculated LDA values at ambient pressure in

table 1. Our data are in good agreement with the previous
results and reproduce well the strong anisotropy of the Born
effective charge tensor on oxygen atoms. The discrepancy
between our results and earlier findings [14, 20] is well within
the range that can be attributed to differences in the theoretical
ground state structures.

3.4. The dielectric permittivity tensor

The frequency-dependent dielectric tensor of tetragonal ZrO2

is diagonal and has two independent components: εxx = εyy

perpendicular to the c axis, and εzz along the c axis. There are
two contributions to the dielectric tensor, electronic and lattice
(phonon). The static value, ε0, includes both contributions
while the optical limit, ε∞, includes only the electronic
contribution. Available LDA results for these properties are
compared in table 2. The results from [14] include only the
lattice contribution, ε0 − ε∞.

The best, although approximate, way to compare
calculated single-crystal results to experimental data obtained
on polycrystalline samples is to average the components of
the computed tensor to produce ε̄ = 2εxx +εzz

3 . The results
are included in table 2 and show a qualitative agreement with
other calculations and with experiment. Overestimation of the
dielectric tensors illustrated in table 2 is common for the LDA
level of theory [20].

The asymmetry of the static dielectric tensor is clearly
due to the lattice contributions from IR-active modes, since the
electronic contribution ε∞ is nearly isotropic.

3.5. Phonon frequencies at the � point

An accurate description of phonon frequencies is a stringent
test for a theoretical model. There are a number of
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Table 2. Dielectric permittivity tensors of tetragonal zirconia.

LDAa LDAb LDAc Experimentd

ε0
xx — 48.10 54.58

ε0
zz — 20.31 20.23

ε0
xx -εxx

∞ 41.6 42.36 48.54

ε0
zz–ε∞

zz 14.9 15.03 14.82

ε̄0 — 38.84 43.13 34.5–39.8

ε∞
xx — 5.74 6.04

ε∞
zz — 5.28 5.41

ε̄∞ — 5.59 5.83 4.2–4.9

a USP calculations; only the lattice contribution is
reported [14].
b NCP calculations using ABINIT [20].
c NCP calculations, present result.
d Quoted from [20].

experimental data on vibrational modes of tetragonal zirconia
from IR and Raman spectroscopy [36–39], as well as a body of
model [36, 40] and DFT [14, 20] calculated results. However, a
controversy still exists as regards the phonon mode assignment.
An effort at resolving this issue has been offered in [36] and
independently in [20], but the resulting assignments still do not
agree with each other.

Group theoretical analysis of optical modes (e.g., using
the Bilbao Crystallographic Server [41]) shows that there are
six Raman-active modes (A1g, 2B1g, 3Eg), three IR-active
modes (A2u, 2Eu), and a silent mode (B2u) in tetragonal
zirconia. Experiments have been performed mostly on
tetragonal zirconia stabilized with dopants which explains the
scatter of experimental data reported in table 3. The most
accurate results available are from the Raman spectra of a pure
tetragonal phase [4, 36].

Our results for phonon frequencies are in good agreement
with the earlier LDA calculations and with experimental data
(table 3). Note that the GGA frequencies [8] are much less
accurate than the LDA ones for both IR- and Raman-active
modes, which supports our choice of the LDA functional
for this study. The results of the symmetry analysis of the
� point phonons confirm assignments from [20] with one
exception—we find that the Raman mode A1g (271 cm−1) has
a higher frequency than the IR-active mode with Eu symmetry
(258 cm−1). This Raman frequency agrees very well with the
results for pure t-ZrO2 [4, 26, 36]. The assignment described
in table 3 is essentially equivalent to an earlier suggestion [43]
and it finally disproves an alternative assignment from [38].

4. The pressure-induced transition to the cubic phase

The results presented in the previous section illustrate the level
of accuracy achievable in DFT calculations of ground state
properties of tetragonal zirconia. The main motivation of the
present study is to extend such calculations to explain the
changes of structure and properties under compression that
potentially lead to a phase transition.

Figure 1. Pressure dependence of the tetragonal distortion
characteristics, A − 1 (open circles) and dz (solid circles). A
quasi-harmonic correction of 2.2 GPa (at 300 K) is not included in
the pressure.

4.1. Structural changes under pressure

Calculated pressure–volume data for t-ZrO2 in the pressure
range from 0 to 30 GPa were fitted using the third-order Birch–
Murnaghan EOS [22]. Equation of state parameters are B =
200(2) GPa and B ′ = 5.5(1). This result agrees well with the
experimental and LDA results (table A.2).

Figure 1 shows the calculated pressure dependence of the
two distortion characteristics that can be considered as order
parameters of a phase transition under compression. LDA
results predict that the cell can be described as cubic at about
40 GPa with an abrupt change taking place at 35 GPa. There
is no anomalous behaviour at lower pressures; both curves
in figure 1 are smooth up to about 32 GPa. It has been
suggested on the basis of comparative studies of impurity-
stabilized t-ZrO2 compounds that there is a simple quadratic
relationship between A and dz , namely A = 9.08d2

z [44].
We show in figure 2 that high pressure results for t-ZrO2

approximately follow this dependence, with a slightly different
proportionality coefficient of 8.3(1). This implies that the
main effect of introducing different stabilizing ions (e.g., Y or
Ce) in various concentrations can be explained by an internal
pressure due to the size effect (including that of accompanying
vacancies), while a chemical effect plays a secondary role in
defining the tetragonal distortion of stabilized zirconia.

An x-ray diffraction study of nanocrystalline ZrO2

reported that at about 8 GPa the A ratio became nearly 1 [5].
On the other hand, in the same experiment the value of dz

decreased much more slowly, so the pressure point of 8 GPa
was not interpreted as a phase transition pressure. Even though
the cell parameters could be presented as being metrically
cubic, the internal coordinates of O atoms were shifted from
the ideal cubic positions of the fluorite structure. Above 30
GPa it was possible to refine the experimental data using
either a tetragonal or cubic description of the cell [5]. It was
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Table 3. Phonon frequencies of tetragonal ZrO2. Assignments of experimental results follow analysis from [20]; the two modes marked with
§ were incorrectly assigned in [20].

Mode IR Raman LDAa LDAb GGAc Exp.d Exp.e Exp.f Exp.g Exp.h Exp.i LDAj

Eg Y 146.7 126 155 150 149 146 139.2
Eu TO Y 152.7 154 76 164 140 142.9
Eu LO Y 259.1 § 232 257.6
A1g Y 270.5 § 286 266 257 262 269 267 271.4
B1g Y 330.5 290 326 305 328 319 315 319.2
A2u TO Y 338.5 334 325 339 320 335.2
Eu TO Y 449.4 437 435 467 550 436.1
Eg Y 473.7 411 474 465 470 461 456 452.7
B1g Y 607.0 569 616 595 609 602 607 592.5
Eg Y 659.2 625 645 630 643 648 645 641.3
A2u LO Y 663.8 650 648.1
B2u 673.4 654.4
Eu LO Y 734.1 734 727.1

a NCP calculations using ABINIT [20].
b USP calculations; only frequencies of IR-active transverse modes are reported [14].
c PAW calculations using VASP [8]. d IR reflectance spectroscopy [42].
e Raman spectroscopy, 4.6 mol % Y2O3 [38]. f IR and Raman spectroscopy, yttria and ceria doped t-ZrO2 [39].
g Raman spectroscopy on yttria doped t-ZrO2; frequencies are extrapolated to 0 K [37]. h Raman spectroscopy,
nanosized pure t-ZrO2 [4, 36]. i Raman spectroscopy, nanosized pure t-ZrO2 [26].
j Present results.

Figure 2. Correlation between two tetragonal distortion
characteristics, A − 1 and dz .

not possible to suggest a definitive transition pressure from
the diffraction data, but our estimate of ≈37 GPa (including
a 2.2 GPa thermal correction) is in good agreement with
the experimental analysis. However, the observation of an
anomaly at 8 GPa cannot be explained on the basis of present
theoretical results and could be due to an experimental artefact
such as an inhomogeneous pressure distribution inside the high
pressure cell. The fact that our data follow the quadratic
coupling between A and dz (see figure 2) while experimental
data from [5] strongly disagree with it further suggests a
problem with the high pressure experiment.

A recent more accurate study of the structural evolution
under pressure up to 18 GPa did not confirm the existence

of a feature at 8 GPa [45]. A linear extrapolation of the cell
parameters showed that the distortion A becomes equal to 1 at
about 36 GPa. The arguments invoked in [45] to justify a linear
extrapolation instead of the EOS fitting are not clear, but either
way the pressure range was not sufficiently large for getting an
accurate estimate of the transition point.

ZrO8 octahedra are strongly distorted at P = 0, so there
are two inequivalent Zr–O bonds with bond lengths of 2.072
and 2.335 Å. The Mulliken bond populations that give a
qualitative assessment of the bond strength are respectively
0.62 and 0.35 in this structure. A compression towards
a fluorite-type structure makes the polyhedron essentially
symmetrical, and the bond populations become 0.45 for both
bonds at 35 GPa. Further compression to 50 GPa preserves
the cubic structure and reduces bond populations only very
slightly.

4.2. Electronic structure changes under pressure

Electronic states of t-ZrO2 can be described as follows. The
valence band is comprised of a relatively narrow (2 eV wide)
band of O s states at about 16 eV below the Fermi level;
these states are hybridized with Zr s and p states. There
is a broad band (5 eV wide) of mostly O p states that are
hybridized with Zr d states at the top of the valence band.
The lowest conduction band is mostly of Zr d character. We
find the band gap at P = 0 to be indirect with the value of
3.73 eV. Experimental results for the band gap of t-ZrO2 are
4.2 eV from electron energy-loss spectroscopy (EELS) [46]
and 5.78–6.62 eV from vacuum-ultraviolet (VUV) absorption
spectroscopy [47]. One should note that the EELS value gives
at best an estimate of a single-particle band gap [48], so the
VUV result is more reliable despite the large uncertainty of the
VUV band gap [47].

The underestimation of the band gap observed here is
typical of Kohn–Sham DFT calculations. Other published
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Figure 3. Pressure dependence of the indirect (solid circles) and
direct (open circles) band gaps. A quasi-harmonic correction of 2.2
GPa (at 300 K) is not included in the pressure.

LDA values of a band gap are 4.10 eV [49], 4.0 eV [48],
3.85 eV [16] and 3.93 eV [50], while GGA calculations
produced similar values of 3.95 eV [51], 3.90 eV [16],
4.21 eV [52], 3.7 eV [34], and 3.17 eV [21]. It is possible
to improve the description of the band gap by using more
advanced treatments such as invoking a screened exchange
formalism. This approach produces an indirect band gap of
5.95 eV but otherwise does not introduce qualitative changes to
the calculated band structure [50]. An approximate application
of a more sophisticated GW method gives an even higher value
of the band gap, 6.40 eV [49].

The band gap in the tetragonal phase changes its character
under compression. The conduction band minimum, CBM,
remains at the zone centre � in all calculations. The valence
band maximum, VBM, is at the point A (1/2 1/2 1/2) for
pressures below 15 GPa. The indirect band gap decreases
on compression, and the low pressure part of the dependence
shown in figure 3 can be described using a linear fit with a slope
of −6.3 meV GPa−1.

The inflection point at 15 GPa can be seen in figure 3. At
this pressure the VBM is located in the middle of the A–M
path, where M is the (1/2 1/2 0) point. VBM moves to the
point M at pressures above 15 GPa. High pressure structures
starting from the 35 GPa point produce essentially equivalent
values for the valence band maxima at M and � which is easily
understood as these two points are equivalent in a cubic cell.
The band gap after the transition at 35 GPa shows a linear
increase with pressure with a slope of 5.2 meV GPa−1.

The main changes in the electron density of states, DOS,
upon compression can be described as a widening of all
the bands. The width of the valence and conduction bands
increases by approximately 50% at 40 GPa relative to the
ambient conditions. This applies also to the localized Zr 4 p
states that nominally could be considered as core states. Their
contribution to the DOS has a noticeable dispersion even at

P = 0, creating a peak at −25 eV which is approximately
1 eV wide. This peak becomes even more dispersive at 40 GPa,
and it starts showing strong hybridization with O s states. This
observation of the chemical activity of Zr 4p states shows that
it was essential to include semicore states of Zr explicitly in the
calculation.

4.3. Born effective charge tensors and dielectric tensors under
pressure

The pressure dependence of the symmetrically inequivalent
components of the Born effective charge tensors on O and Zr
atoms is presented in figure 4. The Born effective charges for
the pseudo-cubic structure obtained at 40 GPa are essentially
isotropic with the values of 5.94 for Zr and −2.97 for O
(the ratio has to be exactly −2 as a result of the acoustic
sum rule). The charges calculated for cubic zirconia at
ambient conditions [14] are 5.72 and −2.86, respectively. It
is clear from figure 4 that the anisotropy of Born effective
charge tensors decreases under compression and essentially
disappears at the point of transition to fluorite structure.

The large changes in calculated Born effective charges
are in stark contrast to the behaviour of the Mulliken charges
that are commonly used as a qualitative measure of the
charge transfer. Mulliken charges in tetragonal zirconia are
completely independent of pressure, with values of −0.73 (O)
and 1.46 (Zr) from 0 to 50 GPa.

The pressure dependence of the dielectric permittivity
is given in figure 5. The static permittivity calculated
for the cubic structure above the transition pressure, ∼26,
is noticeably lower than the reported permittivity of cubic
zirconia at ambient conditions, ε0 = 35.5 [20]. At
the same time the average value of the optical permittivity
increases on compression, albeit slightly. The difference of
the pressure effects on the lattice contributions to the parallel,
ε0

zz , and perpendicular, ε0
xx , components of the static dielectric

permittivity can be explained by the nature of the contributing
vibrations. The ε0

xx contribution is due to two Eu modes, while
ε0

zz is due to the A2u mode. The contributions are linearly
proportional to the mode oscillator strength and inversely
proportional to the square of the mode frequency. This implies
that in most cases the dielectric permittivity is determined by
the low frequency IR-active modes. The oscillator strength of
the A2u mode increases under pressure faster than the square
of the mode frequency, hence the overall increase in the ε0

zz
values. The frequency of the lowest Eu mode, on the other
hand, increases very rapidly upon compression which leads to
a drop in the ε0

xx values.

4.4. Phonon frequencies at the � point under pressure

High quality Raman spectra are available from diamond anvil
cell experiments on nanosized pure t-ZrO2 crystals in the
pressure range from 0 to 31 GPa [4]. The results show
that at low pressure all Raman frequencies change linearly
with the slopes given in table 4 (these values are related
to the mode Grüneisen coefficients, γi = −∂ ln vi/∂ ln V ).
Calculated LDA values are in good quantitative agreement with
experiment, thus confirming the high accuracy achievable in
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(a) (b)

Figure 4. Pressure dependence of Born effective charges on (a) oxygen and (b) zirconium; Z∗O
11 —open circles, Z∗O

22 , Z∗Zr
33 —solid circles,

Z∗O
33 —open squares. A quasi-harmonic correction of 2.2 GPa (at 300 K) is not included in the pressure.

(a) (b)

Figure 5. Pressure dependence of the (a) static and (b) optical dielectric permittivity; εxx —open circles, εzz—solid circles. A quasi-harmonic
correction of 2.2 GPa (at 300 K) is not included in the pressure.

Table 4. Linear fit of Raman frequencies for pressures below
10 GPa, v = v0 + P∂v

∂ P .

ν0 (cm−1) ∂ν/∂ P (cm−1 GPa−1)

Experimenta LDAb Experimenta LDAb

149.2 139.6 1.75 1.49
269.4 272.1 −3.59 −3.77
319.4 319.9 3.43 3.03
461.6 452.7 5.58 5.14
602.5 592.8 2.41 2.53
648.5 641.8 2.79 2.30

a Experimental data from [4].
b Present results.

theoretical modelling of such sensitive properties. All modes
stiffen upon compression with the exception of the 260 cm−1

line, which softens. After about 10 GPa the dependence
of frequencies on pressure becomes nonlinear both in the
experiment [4] and in our calculations; see figure 6.

There is an intriguing question as regards the behaviour
of the two lowest Raman-active branches. Experimental study
assigned both of them an Eg symmetry label, and then the
spectra were interpreted assuming a non-crossing behaviour
for these two modes. The authors state that there is an

exchange of the intrinsic character, namely of the peak width,
of the two modes at 21 GPa, although it was claimed that the
modes cannot actually cross for symmetry reasons [4]. We
have presented a correct mode assignment in table 3 which
agrees with e.g. [43] and confirms that these two modes are
of different symmetries. According to the symmetry analysis
one of these modes has a two-dimensional representation (Eg,
the lowest mode at P = 0) while the other is one dimensional
(A1g), and there is no symmetry argument against crossing
of these two branches. We predict this crossing to occur
at 25 GPa (including quasi-harmonic correction), close to
the experimental estimate of 21 GPa for the ‘exchange of
character’ point.

The softening of the 260 cm−1 mode in the pressure
range from 0 to 30 GPa has been fitted using a power law
v = a(Pc − P)b [4]. The result of the fitting of experimental
data predicted a possible phase transition at Pc = 38 GPa
where the frequency would become zero. A similar fitting
of our data predicts a complete softening at a slightly lower
pressure of 36.7(2) GPa including a 2.2 GPa quasi-harmonic
correction. This conclusion is confirmed quite accurately by
inspection of the calculated frequencies at higher pressures;
see figure 6(a). There is a clear discontinuity in three branches,

8



J. Phys.: Condens. Matter 21 (2009) 485404 V Milman et al

(a) (b)

Figure 6. Calculated pressure dependence of Raman frequencies (a) and intensities (b). The symbols in the two charts correspond to the same
phonon branches. The solid line with no symbols represents the combined intensity of two high frequency modes. A quasi-harmonic
correction of 2.2 GPa (at 300 K) is not included in the pressure.

and most prominently there is a strong dip of the A1g branch to
essentially zero frequency.

A very detailed symmetry analysis of a possible symmetry
change under pressure has been offered in [45]. The underlying
assumption was again that the two lowest modes do not cross
under compression and hence are of the same Eg symmetry.
The conclusion was that the highest frequency mode at
639 cm−1 is the soft mode of A1g symmetry. Furthermore,
it was suggested that there is a new intermediate tetragonal
phase (space group 136, Z = 4) which is achieved under
compression—and this new phase then further transforms into
a cubic phase. We find it difficult to see how the highest
Raman-active mode could be responsible for a soft mode
transition. There is indeed a slight softening of that mode at the
phase transition point of 35 GPa (figure 6(a)) but it is quite clear
from the actual symmetry analysis that it is the 260 cm−1 mode
which has an A1g character, which softens to zero frequency
and is thus responsible for the tetragonal to cubic transition.

The frequencies of the three high frequency Raman-
active modes as extrapolated in the experimental study would
converge at approximately 650 cm−1 ‘at high pressures’ [4].
This statement has to be qualified for ‘high pressures’ to mean
a point at about 35 GPa where tetragonal distortions disappear.
Our calculated frequencies agree with the estimate, and even
such fine detail as a decrease of the highest frequency Eg mode
before the transition is faithfully reproduced.

4.5. Raman intensities at ambient conditions and under
pressure

There have been a number of reports of the Raman spectra
of tetragonal zirconia at zero pressure. These include studies
of pure nanosized powders [4, 26, 27, 36] as well as yttria-
stabilized samples [37, 39]. Quantitative data on relative
intensities of various lines are invariably noisy since the lines
are fairly broad in nanosized powders and often have to be
separated from the spectrum of the monoclinic phase, but there
seems to be a consensus that the A1g line at 260 cm−1 is the
strongest, followed by the high frequency Eg mode.

There is an experimentally observed global loss of
intensity in Raman spectra above 24 GPa. The spectrum moves
towards a single line at about 700 cm−1, although the spectrum
at 31 GPa still shows a split high frequency peak, so the
structure is not yet cubic at that pressure [4].

Calculated Raman spectra are shown in figure 7 in
comparison with the experimental spectra [4]. Note that we
analyse Raman intensities, not Raman activities [24], so the
results presented in figure 7(b) should be directly comparable
to experiment. The spectra were produced by applying an
instrumental broadening of 10 cm−1 and by using a low
temperature limit in the Raman intensity calculations [24].

The soft mode at 260 cm−1 is the strongest feature in
the spectrum at zero pressure; its intensity is twice as large
as the combined intensities of the two high frequency modes,
both in our calculations (figure 6(b)) and in experiment [4, 26].
The intensity of the soft mode decreases monotonically under
compression and falls to zero upon transition to the cubic
modification. At the same time the intensity of the high
frequency features increases as a result of a monotonic increase
of the intensity of the B1g line combined with the jump of the
Eg mode intensity at the phase transition point. The pressure
dependence of the combined intensity of these two modes, as
shown in figure 6(b), is qualitatively similar to the experimental
observation [4].

5. Conclusions

We presented a comprehensive study of the structure and
properties of tetragonal zirconia at ambient conditions and
under compression up to 50 GPa. Our results strongly suggest
that tetragonal distortions disappear at 37 GPa and the structure
can be described as a fluorite-type cubic modification at higher
pressures. The transition manifests itself clearly in the pressure
dependence of tetragonal distortion parameters, Born effective
charges, the dielectric permittivity, and the electronic band gap.
The frequency of the A1g mode, the strongest line in the Raman
spectrum at P = 0 GPa, softens under pressure according
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(a) (b)

Figure 7. Pressure dependence of Raman spectra; (a) experiment (reprinted from [4] with permission from Elsevier), (b) present calculation.

to the power law and goes to zero at the transition point; its
intensity also decreases.

The structure remains cubic upon further compression to
50 GPa. We have seen no indication for the presence of an
additional intermediate tetragonal phase in the pressure range
10–40 GPa that had been suggested earlier [45]. There are
qualitative changes in the electronic structure of the tetragonal
phase related to the shift of the position of the valence band
maximum, but this change does not have an apparent effect
on measurable physical properties. For example, calculated
optical properties such as a frequency-dependent refractive
index that should be sensitive to details of the electronic
structure do not exhibit any qualitative changes over the
pressure range 0–50 GPa. Our results do not allow us to
exclude definitively the possibility of the presence of such an
extra phase (P42/mnm, Z = 4) since there is no displacive
path that connects it to the known tetragonal phase studied here
(P42/nmc, Z = 2) and so we could not obtain this structure
by simply applying pressure to the known modification. Its
existence is however rather unlikely since it was deduced on
the basis of an erroneous symmetry analysis of soft mode
behaviour and incorrect symmetry assignments [45]. An
attempt to generate such a structure followed by geometry
optimization showed that it spontaneously transforms to cubic
symmetry and thus it is not even a metastable configuration.

One should observe that the agreement of the calculated
phase transition pressure, 35 GPa, with the experimental

estimate of 30 GPa [5] may be slightly fortuitous, or it might
imply that the material inside nanograins represents a nearly
perfect metastable t-ZrO2 with a minimal effect of residual
strain.

In summary, we presented the first ab initio description of
pressure-induced changes in the Raman spectrum of tetragonal
zirconia and showed the relationship between these changes
and the structural phase transformation.

Appendix

We present here a compilation of experimental and theoretical
results relating to the structure and elasticity of tetragonal
zirconia. The first experimentally reported structure of pure
t-ZrO2 was recorded at 1250 ◦C using single-crystal x-ray
diffraction [11]. The most accurate room temperature x-ray
diffraction structure determination of chemically pure t-ZrO2

obtained by the spray-pyrolysis technique was reported in [4].
Neutron powder diffraction of pure t-ZrO2 at room temperature
was used with samples prepared by the alkoxide method [25];
the results can be compared to neutron powder diffraction
analysis of yttria-stabilized t-ZrO2 [28]. Neutron diffraction
was used to obtain the structure of nanocrystalline powders
down to cryogenic temperatures; we included in table A.1 the
lowest temperature data obtained at 5 K for samples with the
grain size of 13 nm [27].
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Table A.1. Structure of tetragonal ZrO2 from experiment and DFT. The name of the DFT package is indicated where known. Nk is the
number of irreducible k-points where the Monkhorst–Pack scheme was used; Ecut is the energy cut-off in eV for plane wave based methods.

Method Nk Ecut a (Å) c (Å) A dz

Experiment (x-ray diffraction)a 3.5958 5.187 1.020 0.045
Experiment (neutron diffraction)b 3.6055 5.1797 1.016 0.041 3
Experiment (neutron diffraction)c 3.591 5.169 1.018 0.041
Experiment (x-ray diffraction)d 3.64 5.27 1.024 0.065
Experiment (neutron diffraction)e 3.574 5.154 1.020 0.047

LDAf 3.57 5.08 1.006 0.029
LDAg 6 1360 3.563 5.104 1.013 0.042
LDAh 40 3.590 5.227 1.030 0.060
LDAi 18 950 3.59 5.15 1.014 0.042
LDAj 12 816 3.55 5.09 1.014 0.040
LDAk 84 800 3.583 5.140 1.014 0.041
LDAl 12 340 3.5567 5.1044 1.014 0.041 8
LDAm 2300 3.5645 5.1258 1.017 0.044 1
LDAn 30 750 3.5654 5.1259 1.017 0.044 1

GGA0 40 3.654 5.364 1.038 0.050
GGAp 216 250 3.645 5.289 1.026 0.054
GGAq 12 500 3.642 5.295 1.028 0.054
GGAr 75 3.61 5.25 1.028 0.047
GGAs 12 3.642 5.275 1.024 0.051 5
GGAt 12 1632 3.622 5.284 1.032 0.057 25
GGAu 45 476 3.61 5.20 1.019

a Pure nanocrystalline t-ZrO2 [4]. b Yttria doped t-ZrO2 [28]. c Pure t-ZrO2 [25].
d Pure t-ZrO2 at high temperature [11]. e Pure t-ZrO2, T = 5 K [27]. f FLAPW [53].
g NCP [49]. h USP (VASP) [16]. i NCP (CPMD) [54]. j NCP (ABINIT) [20].
k PAW (VASP) [35]. l USP [14]. m NCP (PWSCF) [48]. n NCP, present result.
o USP (VASP) [16]. p PAW (VASP) [52]. q PAW (VASP) [8]. r FLAPW (WIEN2k) [51].
s USP (CASTEP) [21]. t PAW-USP (ABINIT) [33]. u NCP (SIESTA) [34].

Table A.2. Mechanical properties of tetragonal ZrO2: the bulk
modulus B and its pressure derivative B ′, Poisson’s ratio ν, the shear
modulus G, the Young modulus E .

B
(GPa) B ′

G
(GPa)

E
(GPa) ν

Exp.a 190 80 215 0.316
Exp.b 198(7)
Exp.c 170(10) 4.3(1.3)

LDAd 200 6.25

LDAe 197 5.0

LDAf 207 5.0

LDAg 196h; 204i 99i 257 0.29

LDAj 200(2)h; 223i 5.5 103i 248–320 0.15–0.59

GGAk 226.1 3.81

a Room temperature ultrasonic measurements on yttria
doped polycrystals [55].
b X-ray diffraction using a diamond anvil cell; pure
nanocrystalline t-ZrO2 [5].
c Synchrotron x-ray diffraction using a diamond anvil cell;
pure nanocrystalline t-ZrO2 [45].
d NCP calculations [56]. e NCP calculations [54].
f NCP calculations [48]. g PAW calculations [35].
h Extracted from EOS calculations (third-order
Birch–Murnaghan equation).
i Polycrystalline Voigt average.
j Present results; the values for E and ν are the limits of
orientation-dependent single-crystal data.
k GGA; all-electron FLAPW calculations [51].

Table A.3. Single-crystal elastic constants of tetragonal ZrO2 (GPa).
The bulk modulus, B, is derived from the Cij tensor.

C11 C33 C44 C66 C12 C13 B

Exp.a 327 264 59 64 100 62 149
SC-TBb 366 286 78 88 180 80 190
PIBc 465 326 101 156 83 49 179
GGAd 293 385 51 187 248 111 210
GGAe 334 248 9.08 152 211 51.9 172
LDAf 382 346 42 167 221 72 204
LDAg 401(3) 345(2) 49(3) 174(1) 245(2) 90(5) 212(2)

a Neutron powder diffraction for 12 mol% Ce doped
t-ZrO2 [32].
b Self-consistent tight-binding model [57].
c Potential-induced breathing model [58].
d NCP calculations [34]. e PAW-USP calculations [33].
f PAW calculations [35]. g Present results.

Available experimental and DFT results for mechanical
properties of tetragonal ZrO2 are presented in table A.2. The
bulk modulus values were obtained mostly from high pressure
compressibility experiments, either by using a diamond anvil
cell or by using DFT to calculate the equation of state. The
low quality of the fit for the measured EOSs is illustrated by
large statistical uncertainties [5, 45], so one still does not have
an accurate experimental estimate of the t-ZrO2 bulk modulus.

The theoretical and experimental results for single-crystal
elastic constants of t-ZrO2 are summarized in table A.3.
Experimental values of elastic constants are the first reported
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results from determining elastic constants of anisotropic
materials using powder diffraction measurements [32]. The
derivation of the Ci j tensor required strain–stress data as
well as an estimated value of Young’s modulus (taken to be
192 GPa).
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Merle-Méjean T 2002 J. Am. Ceram. Soc. 85 1745–9

[44] Howard C J, Hunter B A and Kim D-J 1998 J. Am. Ceram. Soc.
81 241–3

[45] Bouvier P, Dmitriev V and Lucazeau G 2003 Eur. Phys. J. B
35 301–9

[46] McComb D W 1996 Phys. Rev. B 54 7094–102
[47] French R H, Glass S J, Ohuchi F S, Xu Y N and Ching W

Y 1994 Phys. Rev. B 49 5133–41
[48] Dash L K, Vast N, Baranek P, Cheynet M-C and

Reining L 2004 Phys. Rev. B 70 245116
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